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Abstract HPFT

HPFTP

This paper presents the; theoretical foundation and HPOP

application of two univariate failure detection HPOT

algorithms to Space Shuttl,; Main Engine (SSME) test LPFP

firing data. Both algorithms were applied to data LPOP

collected during steady-sutte operation of the engine, m

One algorithm, the time s_'.ries algorithm, is based on MCC

time series techniques and involves the computation of p(x)

autoregressive models. Tim_ series techniques have been

previously applied to SSMF data. The second algorithm Pxx(f)

is based on standard sigmd processing techniques. It PBP

consists of tracking the variations in the average signal PID

power with time. The average signal power algorithm is PSD

a newly proposed SSME failure detection algorithm, q-I

Seven nominal test firings were used to develop failure rxx [m]

indication thresholds fcr each algorithm. These

thresholds were tested using four anomalous firings and RPL

one additional nominal fi_g. Both algorithms provided SSME

significantly earlier failure indication times than did the T

current redline limit sysUm. Neither algorithm gave u(t)

false failure indications Ior the nominal firing. The x[n]

strengths and weaknesses of the two algorithms are y(t)
discussed and compared. The average signal power

algorithm was found to have several advantages over the

time series algorithm.
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Introduction

An investigation was conducted to demonstrate the

applicability of two steady-state failure detection

algorithms to Space Shuttle Main Engine (SSME) data.

One algorithm was based on time series techniques and

the other on signal processing techniques. The

algorithms were applied to improve the failure detection

capability of safety systems during ground test firings

and flight of the engine. With the current failure

detection and control system on the SSME, several test

firings have resulted in complete or partial loss of an

engine. Forty-two firings have been classified as

failures, and twenty-seven have had sufficient severity to

be labeled as major failures. 1 The majority of these

failures occurred during steady-state operation of the

engine. Although this represents a small percentage of



the more than 1300 hot fire tests to date, these failures

resulted in significant engine and facility damage, loss

of fleet leader engine components, and a delay in the

program schedule.

The current closed-loop SSME failure detection

system employs basic redline limits. There are five

redlined flight parameters; all monitor the high pressure

turbopumps. These are the High Pressure Fuel Turbine

(HPFT) and High Pressure Oxidizer Turbine (HI_T)

discharge temperatures, the High Pressure Fuel Pump

(HPFP) coolant liner pressure, the High Pressure

Oxidizer Pump (HPOP) intermediate seal purge

pressure, and the HPOT secondary seal cavity pressure.

The redlined parameters have upper and/or lower limits

assigned to them. Limit monitoring commences at

scheduled times during startup and continues until the

initiation of the shutdown phase. 2 The test firing
failures described in Ref. 1 are evidence that a more

advanced detection system is needed. The current limit

monitoring techniques are not capable of detecting

certain modes of failure with sufficient warning to avoid

major hardware and facility damage. Significant

improvements to safety would be realized by a system

capable of detecting failures earlier than the current

redline-based system.

Several advanced failure detection algorithms have

been proposed for the SSME. To date, they have been

tested off-line on past failures and nominal test firings

and have demonstrated the ability to detect failures prior

to the existing redline-limit system. One such

algorithm, which monitors individual parameters during

steady-state operation of the SSME, is the System for

Anomaly and Failure Detection (SAFD) aigorithm.3

Another univariate approach which has been applied to

steady-state SSME data is time series analysis. 4 Two

multi-parameter algorithms have been proposed for

improved steady-state failure detection. They are the

Health Monitoring System for Rocket Engines

(HMSRE) algorithm5 and the clustering algorithm.4

Finally, an approach developed to detect failures during

non-steady-state operation of the SSME is the

Recursive Structure Identification (RESID) technique.4

Two univariate failure detection algorithms were

investigated and compared in this study. Both

algorithms were employed during steady-state operation

of the engine at 104 percent Rated Power Level (RPL)

and 109 percent RPL. The algorithm based on time

series techniques had been previously reported and

consisted of using Autoregressive (AR) models to

predict the future behavior of parameters based on their

past behavior. The time series algorithm was restricted

to stationary signals because it involved the

computation of models for signal prediction. Each

model was computed over a 4-see window, and errors

between predicted and actual values were tracked over

subsequent 4-see windows. The second algorithm

investigated, the average signal power algorithm, was

based on a well-developed signal processing technique

which has proven to be beneficial in all types of

mechanical signature analysis. 6 The algorithm consisted

of computing and tracking the average power of a signal

over a 2-see moving window. A smaller window was

possible for the average signal power algorithm because

this algorithm did not have model validity concerns.
The smaller window decreased the time until the

algorithm was available for failure detection.

Furthermore, a stationary assumption could be made

over the 2-see computation window, allowing the

average signal power algorithm to be applied to five

more parameters than the time series algorithm. This

paper presents the theoretical foundation of the time

series and average signal power algorithms, and

discusses their application to the SSME failure

detection problem. The failure indication times of the

two algorithms are presented, along with a comparison

of the strengths and weaknesses of the algorithms.

The application of the time series algorithm and the

average signal power algorithm was accomplished using

a system identification and signal processing software

package on a RISC workstation. Command and Data

Simulator (CADS) data from seven nominal SSME

tests were used to establish the failure indication

thresholds for each algorithm. These tests were A2-457,

A2-463, A2-479, A2-480, A2-481, A2-483, and A2-

484. Both algorithms were tested with CADS data from

four failures, A2-249, A1-340, A1-364, and A1-436,

and one recent nominal test firing, A1-618. The first

half of a test firing designation indicates the test stand

on which the firing took place, and the second half

indicates the test number. When the two algorithms

were used in the failure detection mode, AR models

were computed for 9 parameters, and the average signal

power was computed for 14 parameters. The AR

parameters were chosen because they typically displayed

stationary behavior during steady-state operation of the

engine. Furthermore, failure investigation summaries



indicated that some of the ptrameters chosen provided

early failure indications for many of the anomalous test

firings.2 Parameters which were strongly affected by

engine _s such as tank venting and pressurization

could not be analyzed by either algorithm. The average

signal power algorithm was applied to the one redlined

parameter which was availa31e in the four anomalous

data sets and which met the above considerations. This

parameter was the HPFT discharge temperature.

Time Series Techniques

System identification i:; the process of selecting
models created from experimental data that will

represent the system or some of its properties. The

approach generally followed is to model the system

using measured input and output signals. In special
cases where only single sign;ds are recorded, a model is

generated which will produce similar output when

excited by white noise.

Generally, most aPl:lications of parametric
estimation use discrete linear time series modeling

techniques. This is due to Wold's fundamental theorem,
which states that any stationary stochastic process can

be expressed as the sum of t_vo stationary and mutually

uncorrelated processes.6 For a general linear input-

output configuration, a con" plete model description is

given by

y(t) = G(q)u(.) + H(q)e(0 O)

where

G(q)= ,'__,g(k)q -k H(q)= 1+ _h(k)q -k
k=l k=l

(2)

and y(t)
and e(t)

system .7

is the output signal, u(t) is the input signal,
is an unmeasurable disturbance into the

The functions G and H are determined during

modeling. To estimate thes: functions, G and H are

parameterized as rational functions in the shift operator
q-l. By parameterizing Eq. (1), the general parametric

model structure is given by

.. C(q)
B(q) u(t) + D--_ e(t)A(q)y(t) = F--_q)

(3)

wh_

A(q) = I+ alq-1+ ..... +a_q -n"

B(q) = blq -I + b2q-Z+ ..... +babq-nb

C(q) = i+ elq-1+ ..... +encq -"c

D(q) = 1+ dlq-l+ ..... +dndq -nd

F(q) = 1+ flq-l+ ..... +fnfq -"f

The orders of the polynomials are given by na, nb, nc,
nd and nf. For the AR model nc=nd=nf=0, and

C(c0 = D(q) = F(q) = I. Another commonly used model

is the Autoregressive Moving Average (ARMA) model
in which nd= nf = 0 and D(q) = F(q) = 1.7

When there is no input into the system, u(t) = 0,

the model given in Eq. 3 becomes

A(q)y(0 = C(q)c(O (4)

Equation (4) represents the general ARMA model
structure for the case when no input is present. For the

AR model, C(q) = 1 in Eq. (4). These univariate models

predict the behavior of a single parameter based upon
the analysis of the past data of that parameter. C(q) is

the moving average portion of the model, and attempts

to describe the properties of the disturbance term, e(t). 7

The decision of which model type and order to

select is a trade-off between implementation issues and

the accuracy with which the model is able to describe

the parameter. For example, in a real-time hardware

implementation AR represents less computational
burden than ARMA. Furthermore, for a given model

type, lower order models can be computed more quickly.

Therefore, given several models with similar prediction

capabilities, the least complex model should be chosen.

The Final Prediction Error (FPE), a measure of the

prediction capability of a model, simulates cross
validation with another data set. The model with the

smallest FPE should be chosen. The stability of the

model is checked using a pole-zero diagram; all poles
and zeros must lie within the unit circle. A near pole-
zero cancellation indicates that a lower order model

should be chosen. Also, if any of the uncertainty

regions associated with the poles or zeros overlap, or
cross the stability circle, a lower model order should be

chosen. The frequency response comparison and the

residual analysis are developed to determine the ability

of the model to predict the data. The residuals between
the actual data values and the modeled values should be

random noise for the model to be a good predictor of the



system. This is checked by computing the autocorrcla-
tion function of the residuals. 7

Signal Processing Techniques

For discrete random processes, probabilistic
functions are used to describe the behavior of the

system. The mean or expected value of a random

process at time n is given by Eq. (5):

_[n] = E{x[n]} (5)

where

_{x} = ixp(x)dx

and p(x) is the probability density function of x.

The autocorrelation function, rxx[nl,n2], of a
random process at two different times nl and n2 is
defined as

ru[n l, n2] = E{x[n l]x*[n2]} (7)

where x* is the complex conjugate of x. For a

stationary random process, the autocorrelation depends

only on the time-difference or lag index, nl-n2 or m.
The autocorrelation of a stationary discrete random

process is thus given by

r_[m] = E{x[n + m]x*[n]} (8)

To describe how the variance of a random process is

distributed with frequency, the Power Specwal Density

(PSD) is computed. For stationary signals the PSD is

given by Eq. (9), which is bandiimited to +1/(2"I"), and
is defined as the discrete-time Fourier transform of the
au_correlation function.

(9)
Pu(f) = T ___ru[m] exp(-j2_ffnT)

m_-_

The inverse discrete-time Fourier transform of Eq. (9)

yields an expression for the autocorrelation function

r_[m] = ___ Pxx(f)exp(j2_:fmT)df
(m)

If the autocorrelation function given in Eq. (10) is

evaluated at zero lag, then an expression for the average

signal power of a random stationary process results:

Average Signal Power = ru[0] = _.lb P_=(f)df

(11)

Equation (11) indicates that the area under the PSD is

the average power, and emphasizes that the PSD is a

density function that represents the distribution of

power with respect to frequency, s

Application

In applying the algorithms, several system
conditions required consideration in order to ensure that

the algorithms would not erroneously indicate an engine

fault. These conditions were sensor failure, propellant
tank venting and pressurization, and propellant transfer.

Both nominal and anomalous test firings have
experienced sensor failures. Sensor failure detection

methods must be employed before, or concurrently,

with safety monitoring algorithms in order to eliminate

the possibility of a sensor failure being interpreted as an

engine problem. For this investigation, all parameters

exhibiting sensor problems were removed prior to the
application of the two algorithms.

Some test firings have included propellant transfer

from barges, or propellant tank venting and pres-
surization. For several parameters, these processes

introduce transient excursions that are not due to power
level transitions. Figure l(a) illustrates the effect of

venting followed by pressurization on the HPOP inlet

pressure for test firing A2-463. The decrease and

subsequent increase observed in the signal correspond

directly to the venting and pressurization processes.
Figure l(b) shows the Main Combustion Chamber

(MCC) controller reference pressure for the same test.
The controller reference pressure has been included so

that the effects due to power level transitions can be

differentiated from the effects due to tank venting and

pressurization. In a test without venting or pres-
surization, the curves in Figs. l(a) and (b) would have

similar shapes.

Time Series Algorithm

AR models were computed for the nine parameters
indicated in Table 1. The Parameter Identification (PIE))

numbers listed in Table 1 are used to label the para-
meters on SSME data tapes. The additional parameters

given in Table 1 displayed excursions or non-stationary

4



behavior as compared t,> the model computation

interval, and thus did not satisfy the stationary

requirement of the time series algorithm. In many cases,

this non-stationary behavior was due to tank venting,

pressurization, or propellant transfer. In order to apply

the time series algorithm to additional parameters, a
method which would remove the transient effects caused

by these p_ is required.

The AR and ARMA iaodels were created during

4 sec of engine operation in which the parameter
exhibited steady-state or stationary behavior. Not all

parameters achieved steady-state behavior at the same

time following the scheduh_ completion of a transient.

Therefore, a safety factor cf at least 2 sec was allowed

prior to model construction This allowed models for all

parameters of a given test firing to be computed over

the same interval. For _'ase of computation and

interpretation, the mean was removed from the data
prior to model construction. The 4-sec window

represented a trade-off between model computation time

and model prediction accuracy. A larger computation

window increased the ability of the model to accurately

predict future signal behavior, however, a larger window
also increased the time dttring which the time series

algorithm was not available for safety monitoring.

Each model was evaluated using four criteria. These

criteria were (1) monitorin_ the FPE, (2) computing the

poles and zeros of the modal and checking for stability

and overlap, (3) comparing the actual frequency response

to that of the model, and (4) ensuring that the residual
autocorrelation function did not exceed the confidence

interval. In applying these criteria to AR and ARMA
models of various orders, it was found that the

autoregressive model of order five, AR[5], provided the

most consistent, adequate representation of the data.

This concurred with the pr¢ viously reported AR model

order applied to SSME data. 4 In general, it was found

that ARMA models introduced spurious information
into the model frequency response. Also, ARMA

models experienced stability problems, and had added

computational burden. AR models of an order less than

five successfully described only a minority of the

parameters. As the AR m(,del order was increased to

values greater than five, marginal improvements in the
FPE and the residual autl>correlation function were

sometimes observed, but the frequency response of the

model and data began to diw.rge.

Once a model had be_n created, it was used to

predict the future behavior of the signal. The 4-sec

window was moved forward in time in 1-sec increments;

thus, any two adjacent windows overlapped by

75 percent. For each window the autocorrelation

function of the residuals was computed for lags between
0 and 25. One lag was equivalent to one sampling

interval or 40 msec. When implemented in hardware,
the 1-sec time increment could be decreased to the

40 msec sampling rate to improve the failure detection

capability of the algorithm.

Due to the highly dynamic nature of the system,
the residual confidence interval was often exceeded for
the 3,2 nominal tests. This necessitated thresholds to be

established to prevent incorrect failure indications. The

thresholds given in Table 2 represent the maximum
absolute value of the residual autocorrelation function

for all of the A2 nominal tests at either 104 percent
RPL or 109 percent RPL. Although the models

generated at 104 percent RPL were often adequate in

describing the data at 109 percent RPL, both models

were computed in order to base the thresholds on a

larger data set. If the residual autocorrelation function

for the model computation window fell outside the
confidence interval, the model was not included in the

threshold determination. When used in the failure

detection mode, failure of an autocorrelation function to

fall within the threshold interval given in Table 2
resulted in a failure indication.

In applying the time series algorithm to parameters

that were susceptible to venting and pressurization,

extremely high thresholds were required to ensure no

false failure indications. This was expected since these

parameters exhibited non-stationary behavior. For

example, the Low Pressure Oxidizer Pump (LPOP)

shaft speed (PID 30) required a threshold of 0.9 on a

scale of one. A threshold of this magnitude clearly

indicates that the time series algorithm is not an

appropriate failure indicator.

Average Si_al Power Algorithm

The average signal power of various SSME

parameters was determined by computing the

autocorrelation at zero lag, as given by Eq. (11), for the

parameters listed in Table 1. This equation assumes that

the signal is stationary over the computation interval.

Although some parameters exhibited overall non-
stationary trends, stationary behavior was achieved

during the 2-sec computation interval. Therefore, the

computation of the average signal power using the
autocorrelation function was valid.

The average signal power calculations were

performed over 2-sec, 50 percent overlapping windows

for the A2 nominal test firings at both 104 percent RPL



and 109 percent RPL. In order to base the threshold
calculations on a larger data set, both engine power
levels were used in the determination of the failure
indication thresholds. This was possible since the

average signal power was not consistently higher at
either power level. The 2-see window and 1-see time
increment were selected for ease of computation. In a

hardware implementation, the window could be
decreased to minimize the initial computation time

during which the algorithm would not be available for
failure detection. Also, the time increment could be

decreased to improve the failure detection capability of
the algorithm. As in the time series algorithm, the
mean was removed from the data prior to the application

of the algorithm.

The average and three standard deviations of the
average signal power were computed for all seven A2
nominal firings at both engine power levels. To
calculate the thresholds, these values were combined as

shown in Eq. (12). The expectation operator, E, used in
Eq. (12) was previously defined in Eq. (6).

2*7

1 ,__E(average poweri)+
threshold = [_;-_ i=1

2*7

1 * Z 3 * standard deviationi] * safety factor
2*7 i=t

(12)

A factor of safety from 1.5 to 3.5 was needed to ensure
no false failure indications for the A2 nominal f'rrings.

The safety factors reflected the variations in signal
behavior observed over these firings. The thresholds and

safety factors are given in Table 2. When used in the
failure detection mode, failure of the average signal

power of a parameter to fall beneath its threshold results
in a failure indication.

For some of the parameters sensitive to venting and

pressurization, the required safety factors were greater
than 2.5. These parameters were the HPOT discharge
temperatures (PIDs 233 and 234) and the Prebumer
Boost Pump (PBP) discharge temperature(PID 94). The
high safety factors were attributed to the transient
behavior introduced by the venting and pressurization

processes. As with the time series algorithm, the
average signal power algorithm could be applied to a
larger set of parameters if the effects due to these
processes could be removed. In addition, the HPFP shaft
speed (PID 260) also required a large safety factor. This
was attributed to the extremely noisy signal observed
for this parameter. The larger safety factors decreased the

ability of the average signal power algorithm to detect
engine anomalies, tM.aebydegrading the effectiveness of
the algorithm. Thus, the parameters which required
factors of safety greater than 2.5 were not used for
failure detection.

Results and Discussion

Failure indication thresholds were established by

applying the time series and average signal power
algorithms to seven A2 nominal tests. Four anomalous
firings and one A1 nominal firing were tested using the
thresholds given in Table 2.

The four anomalous test firings analyzed, A2-249,
A1-340, A1-364, and A1-436, were all High Pressure

Fuel Turbopump (HPFTP) failures. Detailed failure
summaries may be found in Ref. 2. These firings were
chosen for two reasons: (1) the failures occurred during

steady-state operation of the engine and (2) the firings
exhibited failure indications before redline cutoff values
were attained. In addition, a more recent nominal firing,

AI-618, was also tested against the thresholds to ensure
that false failure indications would not occur. Although

only HPVrP anomalies were considered, performance
parameters from many parts of the engine were selected.
The high degree of interdependence among engine
components typically causes a failure in one component
to quickly manifest itself throughout the engine.

In applying the time series algorithm to the
parameters indicated in Table 1, a series of plots was
developed to evaluate the validity of the computed
models. Figure 2 displays an example of the plots
necessary in determining validity of the AR[5] model
for the HPFP discharge pressure for test A2-463.

Figure 2(a) displays the five zeros of the model, along
with the uncertainties in their locations. The

uncertainties are calculated for both the real and

imaginary parts; thus, the uncertainty in location of the
real zero is given by a line. As required for stability, the
zeros all lie within the unit circle, and their uncertainty

regions do not overlap or cross the unit circle.
Figure 2(b) compares the trends in the frequency
response of the model with the trends in the frequency
response of the actual data. As can be seen, these two
curves respond similarly with frequency. Finally, the
autocorrelation function of the residuals for the 4-see

model computation window is given in Fig. 2(c). The
autocorrelation of the residuals is well within the

confidence interval for lags greater than zero, indicating
that the residuals are random noise as required. These

figures demonstrate that the AR[5] model is a valid
predictor of the I-IPFPdischarge pressure.



Figure 3 is an example of the application of the

time series algorithm to an anomalous test fu'ing. The

HPFP discharge pressure for test A1-340 is the

parameter shown. Within each 4-see window, the

autocorrelation function of the residuals is computed,

and the maximum value exceeding the confidence
interval is plotted as a fun,:tion of time. The failure

indication thresholds for the,. HPFP discharge pressure
are also indicated in Fig. 3. l'he parameter exceeds the

thresholds seven times. The;e times correspond to the

events detailed in the failu, e summary report for this

test fLring. During test A1-2,40, the Turn/Around duct

inner wall fractured at 20.6 sec and major ruptures
occurred at 290 see.2 Figure 3 also displays the tendency
of the residuals to exceed th_ thresholds for an interval

of time, and then subseque_ltly fall back between the

thresholds. This can be attributed to attempts, by the

engine, to compensate for aaomalous occurrences and

return to a nominal mode of,)peration.

Table 3(a) lists a majority of the failure indication

times obtained by applying the time series algorithm to

the four anomalous test Lrings. The values listed
indicate the times, in secords from start, at which a

given parameter exceede:l its failure indication

thresholds. In some cases, the residual autocorrelation
function confidence interval was exceeded for the model

computation window. SuclI models became biased
estimators of future behavior and were therefore

considered invalid. The parameters affected by this
phenomenon were the mixlure ratio (PID 8) for test

fwings A1-340 and A1-364, and the Low Pressure Fuel

Pump (LPFP) shaft speed (PID 32) for test f'u'ing A1-

364. The question of model validity presents a unique

implementation concern for the time series algorithm.

A model can be checked in real-time; however, it cannot

be recomputed using a different order number. Thus, the

failure detection capability of the time series algorithm

would be compromised as lhe number of parameters
with invalid models increased.

When space permitted, all of the times at which the

time series algorithm thresaolds were exceeded are

included in Table 3(a). For some parameters, the times
that the thresholds were excc_:ded were too numerous to

list completely. For these pltrameters, the first failure

indication times are given, as well as those times which

were in closest agreement with the failure indication

times of the other parameters. This was done to show

agreement among the param:ters of a given test firing

and to provide insight into the progression of engine

problems during the test firiag. For example, test A2-

249 showed agreement am(,ng several parameters at

approximately 398 sec. This _:ould be in response to the

melting of the KeI-F ring documented at 374 see. 2

However, the MCC pressure (PID 130), the HPFP shaft

speed (PID 260) and the LPFP shaft speed (PID 32)

clearly gave earlier indications of abnormal engine

behavior at 123, 156, and 146 sec, respectively. The
failure summary report indicated that cavitation of the

HPFP commenced at 108 sec due to the increased pump
inlet temperatures caused by propellant transfer.

For each anomalous firing, two types of failure

indication times for the time series algorithm were

extracted from Table 3(a). The first type was the first

time at which any parameter of a given test firing
exceeded its failure indication thresholds. The first

failure indication times for tests A2-249, A1-340, A1-

364, and A1-436 were 123, 21 , 137 and 176 sec,

respectively. These times were at least 250 sec earlier

than the corresponding redline cutoff times which are

also given in Table 3(a). The second type of failure
indication time is the first time at which two or more

parameters simultaneously indicated a failure. Table 3(b)

lists these times for the four anomalous firings, along

with the number of parameters in agreement. The fhst
simultaneous failure indication times occurred at least

50 sec prior to the redline cutoff times. The first

simultaneous failure indication times are significant

since agreement between two or more parameters

increases the likelihood that an engine problem has

occurred. In the absence of a thorough sensor signal

validation package, agreement among several sensors

minimizes the chance of a sensor failure being
interpreted as an engine problem. On the other hand,

requiring multiple parameters to exceed the thresholds

simultaneously reduces the ability of the algorithm to

detect failures before they have propagated through the
system. For the anomalous firings studied, either of the

time series algorithm failure indication times could have

alerted engine operators and prevented the progression of

these failures to catastrophic levels.

An example of the computation of the average

signal power for a nominal test firing is given in

Fig. 4. The interval over which the average signal

power was computed for the HPFP discharge pressure

for test firing A2-457 is given in Fig. 4(a), and the

resulting average signal power is given as a function of

time in Fig. 4(b). The fluctuations in the average signal

power were observed in all of the nominal firings and
were considered normal. The fluctuations were taken

into account in calculating the thresholds for the

parameters. The HPFP discharge pressure had a

threshold of 436, well above the maximum average

signal power shown in Fig. 4(b).



An example of the application of the average signal

power algorithm to an anomalous list Cuing is given in

Fig. 5. Figure 5(a) shows the interval over which the

average signal power was computed for the HPFP

discharge pressure for list fling A1-340. Figure 5(b)

displays the resulting average signal power, as a
function of time. The failure indication threshold

calculated from the A2 nominal firings is also shown.

As can be seen, increases in the average signal power

concur with the deviations observed in the signal. The

maximum average signal power for test A1-340 is

almost an order of magnitude greater than the maximum

average signal power for a nominal firing. Figures 3 and

5(b) show that, for the HPFP discharge pressure, the

thresholds for both algorithms were exceeded at

approximately the same times. However, the average

signal power exceeded its threshold by a much larger

percentage than did the time series algorithm. This may
be critical if testing against additional nominal firings

required the _lds to be increased.

Table 4(a) summarizes the application of the

average signal power algorithm to the four anomalous

test firings. The values listed indicate the times, in
seconds from start, at which a given parameter exceeded

its average signal power threshold. Most of the times at
which the thresholds were exceeded were included in

Table 4(a) to show agreement among parameters of a

given list firing and to demonstrate the progression of
the failure during the test firing. For example, test

firing A1-340 showed agreement among five parameters

at 21 sec and eight parameters at 290 sec. As stated

previously, this concurred with the failure investigation

summary report which states that the Turn/Around duct
inner wall fractured at 20.6 sec and major ruptures
occurredat2<)0sec.2

The two types of failure indication times deter-
mined for the time series algorithm were also considered

for the average signal power algorithm. The first failure
indications for the average signal power algorithm for

tests A2-249, A1-340, A1-364, and A1-436 were 61,

21, 149, and 32 sec, respectively. These times were at

least 240 sec earlier than the corresponding redline

cutoff times which are given in Table 4(a). The first

time at which two or more parameters exceeded their

thresholds are given for each anomalous test firing in

Table 403), along with the number of parameters which

were in agreement. Generally, the first simultaneous
failure indication times were substantially earlier than

the redline cutoff times. As with the time series algor-

ithm, the simultaneous indication of a fault by two or

more parameters increases the likelihood that an actual

engine problem has occurred and minimizes the chance
of erroneous failure indications.

A comparison between Tables 3(a) and 4(a)

indicates that the average signal power algorithm

detected an engine problem 62 sex earlier than the time

series algorithm for fn-ing A2-249 and 144 see earlier

for fling A1-436. For test AI-340, the two approaches
had identical fhst failure indication times, and for list

A1-364, the time series algorithm indicated a failure

condition 12 see earlier than the average signal power

algorithm. The HPFP shaft speed (PID 260) provided
the earliest failure indication time for test A1-364. This

parameter was not evaluated by the average signal power
method due to the high safety factor required. For all

four anomalous firings, the HPFP shaft speed provided

early failure indications using the time series algorithm.
This was expected since the four anomalous firings

considered in this study were all HPFTP failures. The

average signal power was computed for six parameters

to which the time series algorithm was not applied.

With the exception of the LPOP shaft speed (PID 30),
these additional parameters provided failure indications
earlier than the redline cutoff times. For test A2-249,

one of the additional parameters, the HPFT discharge

temperature (PID 231), gave the earliest failure
indication time.

By comparing Tables 3(b) and 4(b), it is evident

that the average signal power algorithm had a greater

number of parameters contributing to the first simul-
taneous failure indication time for each anomalous test

firing. A larger number of concurring parameters
increased confidence in the ability of the average signal

power algorithm to detect actual engine failures. The
two algorithms had an identical first simultaneous fail-
ure indication time for test A2-249. For tests A1-340

and A1-436, the average signal power algorithm gave
times that were 270 and 321 see earlier than the time

series algorithm, respectively. For A1-364, the time

series algorithm gave a time which was 233 sec earlier.
Simultaneous failure indication times were explored to
demonstrate the need for shutdown recommendation

criteria in addition to failure indication thresholds.

Failed sensors are of particular concern since no

thorough sensor screening techniques currently exist on

the SSME. It is vital that an algorithm not issue a
shutdown command because of a failed sensor. The
shutdown recommendation criteria must be established

to ensure no erroneous failure indications on a nominal

test, even in the event of failed sensors.



An additional nominal firing, A1-618, was tested

using the time series and average signal power

thresholds developed in this study. This was done to
increase confidence in the thresholds of the two

algorithms. Neither algorithm produced any failure

indications for this test fmng. An extensive amount of

testing against additional nominal test firings is required

to validate and refine the proposed thresholds, and to
establish shutdown recommendation criteria based on

the thresholds. Testing against additional anomalous
firings would further defire the capabilities of the two

algorithms.

Concludil tg_Ig.c.mgfl_

The earliest possibl_ detection of anomalous
behavior during a fning of the SSME is critical. This

investigation determined the ability of two algorithms

to detect the onset of engine faults during steady-state

operation of the engine. Tirae series techniques had been

previously studied. In this tnvestigation, the time series

algorithm used fifth order" AR models to predict the

future behavior of parameters based on their past

behavior. The average signal power algorithm was a

newly proposed SSME fadure detection algorithm. It

consisted of computing ard tracking variations in the

average signal power with time. The same seven A2
nominal tests were used to develop parameter fault

indication thresholds for both algorithms. These

thresholds were applied to four anomalous firings and

one additional nominal f'mllg.

For all four anomalot4s test firings, both the time

series algorithm and the awxage signal power algorithm

provided first failure indication times and first
simultaneous failure indication times that were

significantly earlier than th,_ redline cutoff times. For all

four firings, the average signal power algorithm had a

larger number of parameters contributing to the first
simultaneous failure irMication times. This is

significant since agreement between several parameters

increases the likelihood that an engine problem has
occurred, and minimizes the chance of false failure

indications. Confidence in both algorithms was further

established when the thre;_holds did not produce any
erroneous failure indications for the additional nominal

firing.

The average signal l_wer algorithm had several

advantages over the time series algorithm. A longer

window was needed for the time series algorithm to

ensure model validity. The longer window increased the

time during which this algorithm was not available for
failure detection. Even with this longer window several

of the calculated models were invalid. The question of

model validity presented a unique implementation

concern for the time series algorithm. A model can be

checked in rcal-time; however, it cannot be recomputed

using a different order number. A large number of

invalid models on a test firing would compromise the

failure detection capability of the time series algorithm.

The average signal power algorithm was applicable to a

larger set of performance parameters because it did not

depend as rigidly on the stationary behavior of the

signal. Stationary behavior was achieved over the 2-sec

interval used to compute the average signal power,

allowing this algorithm to be applied to parameters

exhibiting overall non-stationary trends.

Some types of sensor failures would cause both of

the algorithms to exceed their thresholds. This indicates
the need for sensor failure detection methods in order to

eliminate the possibility of a sensor failure being

interpreted as an engine problem. Both algorithms were

affected by engine processes such as tank venting and

pressurization, although the average signal power
algorithm was less sensitive because it did not involve

the computation of a model. Both algorithms could be

applied to a larger set of performance parameters if a

technique were developed to remove the transient effects

caused by these processes.

The failure indication thresholds developed in this

investigation must be tested extensively against

additional nominal and anomalous firings. The nominal
tests would refine the thresholds to ensure no erroneous

failure indications, and the anomalous test firings would

further demonstrate the capabilities and limitations of

the algorithms. Finally, shutdown recommendation

criteria must be developed for the algorithms.
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PID No.

8
17

24

30

32

58

59

90

94

130
203

2O9

231

233
234

260

Parameter Name

Mixture Ratio

MCC Coolant Discharge Press.

MCC Hot,as Injector Press.
LPOP Shatt Speed
LPFP Shait Speed

HPFP Discharl[ePressure
Fuel Preburner Chamber Press.

PBP Discharl[ePressure

HPOP Discharge Pressure

PBP Discharge Temperature
MCC Pressure

Ave. Power

x

x

x

x

x

x

x

x

Time Series

x

x x

x

x

HPFP Inlet Pressure

HPOP Inlet Pressure

x

HPFT Dishar_e Temp. A

HPFT Dishar_e Temp. B

HPOT Discharl[eTemp. A

HPOT Discharl[eTemp. B
HPFP ShaftSpeed

x

x

X

x

x

x

x

x

x -algorithmapplied

Table 1. DescriptionofPID numbers used with time seriesand average signalpower

algorithms.
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I_ID No.

17

24

3O

32

52

58

Time Series

Thresholds

+ .60
+ .50

+ .50

+ .55

+ .50

+ .60

90 + .475

94 ""

130 _+.50

203 ""

Avera_ Power

Thresh-
olds

.00112

Safety
Factors

1.5

200 1.5

125 1.5

1598 2.5

25O9

436

232

6

1.5

1.5

1.5

911 1.5

268 1.5
.04 3.0

47 1.5

4 1.5

1.5

231 -- 32 2.0

232 -- 38 2.5

233 -- 154 3.5

234

26O

104

55OOOO

Table 2.

+ .65

3.5
3.5

Thresholds calculated from the nominal test

firings for the time series algorithm and the
average signal power algorithm, and safety
factors for the average signal power algorithm.
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A2-249

a

A1-340

C

A1-364

C

A1-436

a8

17 398-401 291-293 154,245 176_2
387-90

24 a 290 388-90 a

146-8 .... 224- 369-70,377-9
32 35 .... 304-5,... 280,291-93 c 394-6,414

390-7,402-10,.. 432-33
421-49 d

52 398-399 21-3_91-3 389-390 a
380

58 b b 387-90 a

90 401 b 203245,302 a
387-390

130 123,306-307 291-93 387-90 a
399

26O 56-65,...
99-247 ....

276-9 d

405.5

156-227

229-32,430-1
434

450.58

137,142-56 ....
300-75,377,

390-1 d

392.15Redline
Cutoff Time

203,205,...
353-423,425-

511,...588-9 d

611.06

a thresholdnot exceeded

b failedsensor

c model not valid

d timestoonumerous tolistcompletely

Table 3a. The times,in seconds from start,at which the four anomalous test

firings exceeded the time series algorithm failure indication
thresholds.

First
ISimultaneous
Failure

_Indication Time

Number of

Concurring
Parameters

AS-249

396

2

A1-340

291 154

A1-436

369

Table 3b. The firsttimes, in seconds from start,at which two or more

parameters simultaneously indicated failure,and the number of

parameters which exceededtheirthresholdsatthesetimes.
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Test No.

PID No.
A2-249 A1-340 A1-364 A1438

8 a 22_90-291 a a

17 399,413 21-2,290-1 387-388 a
357-358

24 21-2_90-2,
358

a

32-3,..47-8,.
72-8,83-4,90-1
.. 117-9,..201-2

221-3,..231,..

319-20,..467-8 c
30 a b a a

32 a 290-291 a a

52 398-399,413 21-2,290-1 387-388 a
357-358

58 b b 387-388 a

21,290-291106,399 38759

48-9,72-3,90-1
119,202,221-3,
..,319,343-4,..

484,..543,..
580 C

90 a b a 49

48-9,72-3,91
130 398-399 21-2,290-1 387-388 150,201-2,241

357-358 344,461,475
484-485

203 a 290-291 a a

209 _8-89,125-126 a 211 a

}1,123,..,398- 149,154,159
231 }0,410,413,.. b 182-3_192A4 205,319

431-4,443-6 316-7,335,
449 c 387-388

232 a

405.5Redline
Cutoff Time

137,327,409
412-3,415-6
t29,433-6,447

387-388

392.15450.58

Table 4a.

84,91,176r2oI

231_297,373

402-4,484,512
543,603-4

611.05

a thresholdnot exceeded

b failedsensor

ctimestoonumerous tolistcompletely

The tmes, in seconds from start,at which the four anomalous test

firings exceeded the average signal power algorithm failure
indicationthresholds.
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A2.249 A1-340 A1-364 A1.436

First
Simultaneous
Failure
Indication Time

Number of

Concurring
Parameters

398

3

21 387 48

Table 4b. The first times, in seconds from start, at which two or more
parameters simultaneously indicated failure, and the number of
parameters which exceeded their thresholds at these times.

450

400

350

3OO

250

200 --

150 --

100--

5O

i_,_ PRESSURI ZATI ON/_

VENTING ........

25OO

_- 2OOO

100o

500

(a) HPO_ INLET PRESSUREFOR lEST FIRING A2-463.

m

I I 1 I I J
100 200 300 400 500 G00

TitlE, SEC

(b) IqCCCONTROLLERREFERENCEPRESSUREFOR THAT TEST.

(CONTROLLERREFERENCEPRESSURESHO_SSCHEDULEDPOKIER

LEVEL TRANSITIONS. )

FlfdJRE 1. - EFFECT OF TANK VENTING FOLLOMEDBY PRESSUR-

IZATION.
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